

Twilio integration with Cisco

Unified Contact Center

Enterprise

June 2025

2

Document History

Revision No. Date Description Author

1.0 June-20-2025 Configuration Guide Simal Mathai

3

 Table of Contents
1 Introduction 7

1.1 Executive Summary: Example Use Case Scenario, Benefits 7

1.2 TekVizion Labs 10

1.3 Twilio Programmable Voice: <Gather>, Studio, Dialogflow Virtual Agent

integration, Functions and Sync, etc. 10

1.4 Cisco Unified Contact Center Enterprise 12

2 Topology 13

2.1 UCCE Hardware Components 14

2.2 UCCE Software Requirements 14

3 Pre-requisites 15

3.1 Twilio 15

3.2 Cisco UCCE 15

4 Detailed Twilio - Cisco UCCE Call Flow 16

5 Configuration 18

5.1 Twilio Configuration 18

5.1.1 SIP domains 18

5.1.2 IP access control lists 19

5.1.3 Credential lists 20

5.1.4 Twilio Studio IVR Flow & Dialogflow Virtual Agent 21

5.1.5 Phone Numbers 37

5.1.6 Functions 37

5.1.7 Services 42

5.2 Cisco UBE Configuration 44

5.2.1 Login to CUBE 44

5.2.2 Network Interface 44

5.2.3 Global CUBE Settings 44

5.2.4 Codecs 45

5.2.5 Voice Class Configurations 45

5.2.6 Dial Peers 46

5.2.7 Voice Translation Rules 47

5.2.8 IP Route 47

4

5.2.9 Check Trunk Status 47

5.2.10 Cisco UBE Running Configuration 48

5.3 CVP Configuration 52

5.3.1 Configure SIP Header Passing in CVP 52

5.4 Cisco ICM Configuration 55

5.4.1 ICM Script Configuration 55

5.4.2 Dialed Number and Call Type 56

5.4.3 Mapping the ICM Script to Dialed Number 59

5.5 Cisco UCM Device Configuration 62

5.5.1 Configure Agent Phone in CUCM 62

5.5.2 Add Phone to UCCE Application User 63

5.5.3 Add Phone to End User 64

5.6 Cisco Finesse Configuration 66

5.6.1 Setup Finesse Screen Pop Gadget Files 66

5.6.2 Upload Gadget Files to Finesse Server 67

5.6.3 Configure Finesse Desktop Layout 69

5.7 Twilio Call Context in Cisco Finesse Agent 71

5.7.1 Twilio Call Context 71

5.7.2 Call Scenario Tested 71

6 Glossary 72

Table of Figures

Figure 1 A flowchart view of the use case tested in this TekVizion Validated Blueprint 8

Figure 2 Network Topology .. 13

Figure 3 Call Flow .. 16

Figure 4 Call Flow Cisco UCCE side ... 17

Figure 5 SIP Domains .. 18

Figure 6 SIP domains continuation .. 19

Figure 7 SIP domains continuation .. 19

Figure 8 IP access control lists .. 20

Figure 9 Credential lists ... 20

Figure 10 Twilio Studio IVR Flow ... 21

Figure 11 Twilio IVR Studio Flow – Template ... 22

5

Figure 12 Twilio IVR Studio Flow – Trigger ... 23

Figure 13 Twilio IVR Studio Flow – set_lang_eng ... 23

Figure 14 Twilio IVR Studio Flow gather_input .. 24

Figure 15 Twilio IVR Studio Flow gather_input continuation ... 25

Figure 16 Twilio IVR Studio Flow gather_input continuation ... 26

Figure 17 Twilio IVR Studio Flow – Split_Speech .. 27

Figure 18 Twilio IVR Studio Flow – Connect_to_VirtualAgent ... 28

Figure 19 Twilio IVR Studio Flow – Connect_to_VirtualAgent continuation 29

Figure 20 Basic Dialogflow Bot Setup .. 30

Figure 21 Dialogflow Bot setup continuation .. 30

Figure 22 Dialogflow Bot setup continuation .. 31

Figure 23 Twilio IVR Studio Flow – function_add_sync_virtual_agent 32

Figure 24 Twilio IVR Studio Flow – function_add_sync Continuation 33

Figure 25 Twilio IVR Studio Flow – function_add_sync Continuation 34

Figure 26 Twilio IVR Studio Flow – say_play_1 ... 35

Figure 27 Twilio IVR Studio Flow – split_key_press.. 36

Figure 28 Phone Numbers ... 37

Figure 29 Functions – Create function ... 37

Figure 30 Create function continuation ... 38

Figure 31 Functions – read_sync .. 38

Figure 32 Functions – write_sync .. 38

Figure 33 Functions – Environment Variables ... 40

Figure 34 Functions – Dependencies ... 41

Figure 35 Functions – Dependencies continuation ... 41

Figure 36 Sync Service ... 42

Figure 37 Sync Service Continuation .. 42

Figure 38 Create Sync Maps ... 42

Figure 39 Sync Maps .. 43

Figure 40 CVP OAMP login .. 52

Figure 41 CVP Call Server .. 52

Figure 42 Open CVP Call Server .. 52

Figure 43 CVP SIP Configuration ... 53

Figure 44 Adding SIP Header in CVP .. 53

Figure 45 Added SIP Header in CVP ... 53

Figure 46 Save and Deploy ... 53

Figure 47 Check CVP Call Server Status ... 54

Figure 48 ICM Script (Script name: cvp_dtmf_Twilio) .. 55

Figure 49 ICM Script – Peripheral Variable .. 56

Figure 50 ICM Configuration Manager ... 56

Figure 51 ICM Call Type ... 57

Figure 52 ICM Dialed Number / Script Editor .. 57

Figure 53 ICM Dialed Number / Script Editor Continuation ... 58

6

Figure 54 ICM Dialed Number / Script Editor Continuation ... 58

Figure 55 ICM Script mapping with Dialed Number ... 59

Figure 56 ICM Script mapping with Dialed Number Continuation 59

Figure 57 ICM Script mapping with Dialed Number Continuation 60

Figure 58 ICM Script mapping with Dialed Number Continuation 60

Figure 59 ICM Script mapping with Dialed Number Continuation 61

Figure 60 CUCM Login ... 62

Figure 61 Adding Phone .. 62

Figure 62 Adding Phone Continuation ... 62

Figure 63 Adding Phone Continuation ... 63

Figure 64 Adding Directory Number .. 63

Figure 65 Adding Phone to UCCE Application User .. 64

Figure 66 Adding End User ... 64

Figure 67 Adding Phone to End User .. 64

Figure 68 Adding permissions to End User ... 65

Figure 69 Mapping the End User to the Phone Device ... 65

Figure 70 Sample Gadget Files ... 66

Figure 71 Add API URL in ScreenPop.js file .. 66

Figure 72 Adding Title in HTML file... 67

Figure 73 Password Rest for 3rdpartygadget user ... 67

Figure 74 Connect to Finesse Server .. 67

Figure 75 Copying Gadget files to Finesse Server ... 68

Figure 76 Login to Finesse Administrator .. 69

Figure 77 Finesse Desktop .. 69

Figure 78 Adding Screen Pop Gadget to Finesse Desktop ... 70

Figure 79 Override System Default .. 70

Figure 80 ScreenPop Gadget in Finesse Agent .. 71

Figure 81 ScreenPop Gadget with Twilio Call Context .. 71

Figure 82 Twilio Call Summary .. 71

7

1 Introduction

This document is intended for technical staff and Value Added Resellers (VAR) with installation and

operational responsibilities. This document provides the configurations required for the

integration of Twilio Studio, a platform for PSTN connectivity plus tools for building IVRs and

chatbots (including integrations with Generative AI-capable Virtual Agents, like Dialogflow CX

integrated with Google), with Cisco Unified Contact Center Enterprise (UCCE). As a result of this

integration, a UCCE Agent will receive calls with call context details supplied from the Twilio Studio

IVR / Virtual Agent, regarding its prior processing of the call, when answering incoming calls from

the PSTN. Configurations related to integration of UCCE components are not covered in this

document.

1.1 Executive Summary: Example Use Case Scenario, Benefits

This Configuration Guide "validated blueprint," while modeled after a specific customer use case,

is generic enough that it can represent almost any attempt to front-end a customer's Cisco UCCE

contact center with a developer-built, customized/bespoke, modern, cloud-based IVR or Virtual

Agent/bot from Twilio, where the sending along of spoken, entered, or queried data – i.e. “Call

Context” – to Cisco contact center Agents (e.g. as a screen pop in their Finesse agent desktop

application) is needed.

The Twilio IVR in this scenario can be a basic DTMF- or speech recognition-based IVR (Interactive

Voice Response system), or a fully conversational IVR built with an AI-based virtual agent (such as

Google's DialogFlow CX on Twilio), as the customer may prefer to build. The job of that IVR or

Virtual Agent – successfully validated by this blueprint and TekVizion’s testing of it – is to

supplement and/or eventually replace the existing IVR built into a customer’s Cisco UCCE system

(CVP), for purposes of providing bespoke, intelligent AI-based automated self-service via a Virtual

Agent “bot,” while still providing the necessary call context for any calls being redirected to the

Cisco UCCE contact center, so that human agents there can still process the remaining incoming

calls being escalated to live agents, as needed, without callers having to repeat themselves to give

the human agents the same (call context) info they already gave the Virtual Agent / bot.

In this particular case (see Figure 1 below), we’ve modeled our scenario on that of a typical retail

customer who contacted Twilio for help, because they had a workflow that – while mostly

automate-able – they noticed also needed to be able to handle escalations on few corner cases

of orders to a human agent (connected via UCCE), seamlessly. Other use case examples where this

has proven helpful (but not documented here, being similar but more complex) include another

retailer who had a complex collection of service departments providing customers with help,

depending on what kind of help/service they needed and what of the companies’ products they

owned, etc. Companies that have to route incoming calls from their customers to the appropriate

facilities/locations able to service those customers, provide customers with self-service

information relevant to their purchased modes/products, and/ or help them set up service

appointments for the appropriate service tasks with personnel in those locations – without the

calling customer having to repeat their information or what they were looking for/what they

wanted multiple times – can all use similar set ups to this, without having to forklift replace their

Cisco and UCCE/CVP Contact Center tech estate.

8

In the case of the particular customer we’ve modeled this tested/blueprint scenario after, their

existing Cisco Contact Center and IVR system also had several limitations leaving it unable to

address many self-service use cases by itself, such as:

● The inability to also send text messages (with helpful self-service or TFA - Two Factor

Authentication - links),

● An inability (at least not without expensive firmware upgrades and software upgrade

service contract renewals) to add speech rec or AI-based conversational Virtual Agent

capabilities,

● The practical inability for the IVR/AI-based Virtual Agent to be shared across multiple sites

/ Cisco on-premises installations from the cloud, difficulty in making changes and or to be

centrally managed from the cloud.

All of which led this customer to want to front-end their Cisco Contact Center system with

something more modern, which they could customize as needed, and build for themselves in the

cloud, on Twilio, servicing all of their locations and enabling them to provide a higher level of

(personalized) service as well as a higher degree of self-service to their calling customers.

Figure 1 A flowchart view of the use case tested in this TekVizion Validated Blueprint

When we therefore began constructing our Configuration Guide with this use case in mind, we

were seeking to specifically address a typical call flow similar to that faced by a caller into this

company's services number, as follows:

• The caller first calls into a Twilio IVR / Virtual Agent (same phone number, owned by or

ported to Twilio, of the company’s customer service numbers) similar to the one created

here, and is greeted and prompted for various order data (and/or have that data looked

up by the Twilio IVR/Virtual Agent), such as stating that they wanted to order a certain kind

of product, with certain add-ons (which might or might not be available in a particular

location), etc.

9

• Then the caller would then be potentially directed to some self-service ordering and

fulfillment questions in the Virtual Agent, with answers delivered to the customer via

played prompts and/or text messages sent, for getting the product and service they

required.

• If that addressed the caller’s need, in a self-service/automated manner, then... success! (as

in many cases)!

• Else... in cases where the self-service information was not enough, or the caller still needed

service (e.g. a particular requested add-on product, say “Anchovies” on a pizza order, that

was not available at a particular location and a substitute was needed, or an order change

required), then the caller could elect to have their call sent (queued) at that point to a live

human contact center Agent staffer, who could help the caller with those tricky details –

but most importantly, do so with all of the call context already input and looked up by the

Twilio platform and Dialogflow CX Virtual Agent up to that point sent along to that human

agent also, including:

- DMTF keypresses, called number and whatever number the caller had called from

(ANI/DNIS), language preference entered, etc. (the call metadata),

- what products previously ordered (as well as current order) or models the

customer owned and what they were calling for service about (i.e. the relevant

media content of the call)

- interaction history with the bot (last matched intent, and detected caller sentiment

[score] at last matched intent), etc.

- So that the human agent in the Cisco UCCE Contact Center eventually picking up

the call would have all of that call context already in front of them upon answering

the call in their Finesse Agent desktop application, without the need for the caller

to repeat any of this info, or for the agent to take time to re-gather this information.

Instead, the agent can “get right to the point” with the caller.

Note that while not every literal potential step in the above flow alluded to above is covered here

in this Configuration Guide (it would be too long), the rest can predominantly be found among

Twilio’s Quickstart guides online. The link for Twilio’s Quickstart guides online is

https://www.twilio.com/docs/voice .

However, the basic framework and necessary steps for how to collect and successfully pass

entered call context from a customer-built Twilio app to an Cisco on-premise Unified Contact

Center Enterprise system are laid out here, step by step.

The main tools used to build this validated call flow include Twilio Studio, and the Twilio Console

interface to other Twilio services and tools (such as Functions and Sync), Twilio’s one-click

integration with Google Dialogflow CX, as well as the Cisco UCCE’s various admin interfaces, as

described below.

One interesting key wrinkle solved in validating this Configuration Guide was that the Cisco UCCE

contact center, as is typical for an on-premises contact center system, naturally assumes the

existence of an on-premise database from which info like call context would be assembled to be

sent on to agents (instead of all the info arriving with the call itself from off-board) – logical enough

in the “old days” of single-vendor vertically integrated on-premise systems, but limiting the Cisco

system’s usefulness and extensibility today – whereas more modern, multi-party cloud-based

https://www.twilio.com/docs/voice

10

bespoke and/or customer-built solutions typically use data sources also centralized in the cloud

for sending data with arriving calls as they are passed around. Read on below to see how ancillary

Twilio tools like Twilio Sync have enabled the key “cloud database-to-premises system

connectivity” aspect necessary to get this configuration working for Cisco customers in those

cases!

1.2 TekVizion Labs

TekVizion Labs™ is the first independent interoperability certification lab for business voice

communication leaders. TekVizion’s future-proofed Labs is capable of on-demand testing to

virtually any network configuration and need. Other benefits include:

● Gain a competitive edge by accelerating integration to hundreds of collaboration solutions

and ensure end-to-end functionality for any of your customer’s unique network

requirements.

● Virtualized instances of 300+ collaboration products to build and teardown complex

configurations on demand.

● Launch new features with agility and maintain quality and reliability when validating end

point devices.

About TekVizion

TekVizion is the unparalleled innovator in validation and automation for collaboration solutions.

Our unique combination of systems, automation, and expertise are optimized for quality,

reliability, and scalability for businesses who build or offer collaboration solutions. We enable our

customers to release new features, automate tasks, and deliver proven communications that help

grow revenue in a more efficient, cost effective, and timely manner.

As the most experienced independent vendor, TekVizion has partnered with global service

providers and others as our valued customers. Contact us at www.tekvizion.com for more details.

1.3 Twilio Programmable Voice: <Gather>, Studio, Dialogflow Virtual

Agent integration, Functions and Sync, etc.

Twilio’s Programmable Voice powerful suite of Communications Platform-as-a-Service (CPaaS)

of tools to control and manipulate calls (programmatically) placed to Twilio owned or ported

Phone Numbers includes the following:

Twilio <Gather> speech recognition, for the latest and greatest in speech input collection from any

of multiple providers, with our patent-pending speech provider failover technology, with the most

advanced speech models and a wide variety of languages (including multi- language detection

capability and support). More about the latest on Twilio’s speech recognition technology is

available from below links:

https://www.twilio.com/en-us/changelog/-gather--new-multi-provider-speech-recognition-

models---upcoming

https://www.twilio.com/docs/voice/twiml/gather#overview

https://www.twilio.com/en-us/changelog/-gather--new-multi-provider-speech-recognition-models---upcoming
https://www.twilio.com/en-us/changelog/-gather--new-multi-provider-speech-recognition-models---upcoming
https://www.twilio.com/docs/voice/twiml/gather#overview

11

Twilio Studio is a visual, drag-and-drop editor for creating applications. It can help to build an

entire IVR system itself, or to orchestrate the flow of calls between components such as a

Dialogflow Virtual Agent from a bot provider like Google, with easy one-click connectors, as well as

other Twilio components like PCI-compliant Twilio <Pay> for taking credit card payments over the

phone . When using Twilio Studio, customers will also often use Twilio Functions, Assets, Sync,

and other aspects of Twilio’s platform in building their applications to connect the piece parts

programmatically, to do things like pass call context amongst them.

Read more about them here:

Twilio Studio: https://www.twilio.com/en-us/serverless/studio

Twilio Functions: https://www.twilio.com/en-us/serverless/functions

Twilio Sync: https://www.twilio.com/docs/sync/api

Additionally, Twilio Studio comes with many “one-click” built-in widgets that make adding in

partner capabilities, such as linking to Google DialogFlow CX AI-based Virtual Agents for

Conversational IVRs, much easier. Refer below link for more on how easy to integrate and use it.

https://developers.twilio.com/Twilio-Developers/IVR-Build-a-

thon?exit_from_webinar=true&auto_enter=cancelled&t=1

https://www.twilio.com/en-us/serverless/studio
https://www.twilio.com/en-us/serverless/functions
https://www.twilio.com/docs/sync/api
https://developers.twilio.com/Twilio-Developers/IVR-Build-a-thon?exit_from_webinar=true&auto_enter=cancelled&t=1
https://developers.twilio.com/Twilio-Developers/IVR-Build-a-thon?exit_from_webinar=true&auto_enter=cancelled&t=1

12

1.4 Cisco Unified Contact Center Enterprise

Cisco Unified Contact Center Enterprise is a solution that delivers intelligent call routing, network-

to-desktop Computer Telephony Integration (CTI), and multichannel contact management to

contact center agents over an IP network. Cisco UCCE combines software IP Automatic Call

Distribution (ACD) functionality with Cisco Unified Communications to enable companies to deploy

an advanced, distributed contact center infrastructure rapidly.

The Unified CCE product integrates with Cisco Unified Communications Manager, Cisco Unified

Customer Voice Portal, Cisco VoIP Gateways, and Cisco Unified IP Phones. Together these products

provide contact center solutions to achieve intelligent call routing, multichannel ACD functionality,

Voice Response Unit (VRU) functionality, network call queuing, and consolidated enterprise-wide

reporting. Unified CCE can optionally integrate with Cisco Unified Intelligent Contact Manager to

network with legacy ACD systems while providing a smooth migration path to a converged

communications platform.

The Unified CCE solution consists primarily of four Cisco software products:

● Unified Communications infrastructure—Cisco Unified Communications Manager

● Queuing and self-service—Cisco Unified Customer Voice Portal (Unified CVP)

● Contact center routing and agent management—Unified CCE. The major components are

CallRouter, Logger, Peripheral Gateway, and the Administration & Data Server

● Agent desktop software—Cisco Finesse

13

2 Topology

The network topology used for Twilio Call Studio with Cisco UCCE integration is shown below. A

registration SIP trunk on UDP is configured between Twilio and UCCE Ingress Gateway, Cisco UBE.

Figure 2 Network Topology

14

2.1 UCCE Hardware Components

Hardware Device Version

VMware ESXi Server (Running UCCE Server

Virtual Machines)

7.0.3

Cisco Unified Border Element - ISR4331/K9 14.7

2.2 UCCE Software Requirements

Software Components Version

Cisco Unified CCE 12.6(2)

Cisco CVP 12.6(2)

Cisco VVB 12.6.2.10000-25

Cisco Finesse 12.6.2.10000-82

Cisco UBE 17.12.4a

Cisco UCM 15.0.1.12900-234

Microsoft DNS 1.0

15

3 Pre-requisites

3.1 Twilio

● Twilio account

● Twilio phone number

● Twilio Studio to build IVR flow

● Google GCP account, in which to build a Dialogflow CX Virtual Agent, if desired

3.2 Cisco UCCE

● Cisco UBE to have a public interface configured which is required to setup the Trunk to

Twilio

● CVP is configured to send a new call request to Cisco ICM via the Peripheral Gateway.

● Unified CCE is integrated with CVP, VVB, Finesse and Cisco UCM.

● ICM having the Dialed Number and Call Type configured which is required for the mapping

of ICM script.

● Cisco Finesse Agents configured to accept the incoming calls to UCCE.

16

4 Detailed Twilio - Cisco UCCE Call Flow

Figure 3 Call Flow

● PSTN user calls a Twilio-owned number procured, and/or ported to Twilio, by the operating

organization

● The Twilio Platform routes the call to that organization’s IVR, created in a Twilio Studio

Flow, including prompting the user with a <Gather> for some initial info or for an initial

intent, and from there integration to a Dialogflow Virtual Agent, and, potentially, a

Customer Profile lookup in a Unified Profile before connecting the call to that bot/IVR.

● The Call context of the caller’s conversation with the bot / IVR is stored, via Twilio Functions

and Sync, in a format and data repository such that the Cisco environment will later be

able to access this information when passing the call to the answering Agent

● Based on the caller’s selections in the IVR/Virtual Agent the call can be escalated (“Escalate

to Live Agent in the Studio flow” – see diagram below) i.e. sent to the Cisco environment,

where it will be routed to the appropriate Agent queue in the Cisco UCCE.

17

Figure 4 Call Flow Cisco UCCE side

● Once routed to Cisco UCCE, Cisco UBE receives the call INVITE from Twilio with a header

called “x-ciscodata” which contains the Twilio call ID

● Cisco UBE sends the call to Unified CVP, which is configured to pass the “x-ciscodata”

header to the Unified CCE.

● Unified CVP sends a new call request, which invokes a new incoming Dialed Number, which

further invokes a routing script in the Unified ICM.

● The Unified ICM routing script determines the need of transferring the call to VVB.

● ICM processes the various defined nodes in the routing script and continues the

communication between ICM, CVP and VVB until an Agent becomes available.

● When the Agent becomes available Unified ICM dequeues the call and sends a disconnect

to VVB. ICM then sends a connect- to- agent request to CVP.

● CVP then passes this request to CUCM via a SIP INVITE and the call is routed to the Agent.

● The Twilio call ID passed in the “x-ciscodata” header of the Invite is extracted during the

execution of ICM routing script, and is saved, as a kind of “key,” to a Peripheral Variable

which is then passed to the Finesse Agent.

● Finesse Agent sends an API request to Twilio using that key, the Twilio call ID received in

the x-ciscodata” header, and displays the call context in the Finesse Agent Desktop as a

Screen Pop as the call arrives to the agent.

18

5 Configuration

This section includes the configurations required in Twilio and Cisco UCCE components for

providing the Twilio call context details at Cisco Finesse Agent.

5.1 Twilio Configuration

5.1.1 SIP domains

● Navigate to Voice > Manage > SIP domains

● Select the Plus icon to add a new Domain and Under Configure provide:

o FRIENDLY NAME: Cisco UCCE Demo

● SIP URI: ciscouccedemo

● Under Voice Authentication,

o IP ACCESS CONTROL LISTS: Select the IP access control lists to authenticate

inbound calls to Twilio (Refer Section 5.1.2)

o CREDENTIAL LISTS: Select the appropriate Credential list for authentication (Refer

Section 5.1.3)

Figure 5 SIP Domains

19

● Configure the Call Control Configuration as follows:

Figure 6 SIP domains continuation

● Under SIP Registration,

o Allow SIP Endpoints to register: ENABLED

● Under SIP Registration Authentication,

o CREDENTIAL LISTS: Select the appropriate Credential list for authentication of SIP

Endpoint (Refer Section 5.1.3)

● Save the configuration

Figure 7 SIP domains continuation

5.1.2 IP access control lists

● Navigate to Voice > Manage > IP access control lists

● Click Create new IP Address Range

● Friendly Name: Cisco CUBE

● IP Address Range: Enter the CUBE WAN interface IP Range

● Friendly Name: Enter a suitable name

20

Figure 8 IP access control lists

5.1.3 Credential lists

● Navigate to Voice > Manage > Credential lists

● Click the plus sign to create new Credential List

● Friendly Name: Enter a Friendly name

● Username: Enter the Username

● Password: Enter the Password

Figure 9 Credential lists

21

5.1.4 Twilio Studio IVR Flow & Dialogflow Virtual Agent

Twilio IVR Studio flow is created to connect to a Virtual Agent / IVR and route the call to back to

Cisco UCCE based on the input provided by the caller. Twilio sends the Call ID to Cisco UCCE in the

X-Header of the SIP INVITE.

● Follow the steps in the Twilio Virtual Agent Dialoglfow Onboarding Guide to integrate your

Twilio Account and the Google GCP (Google Cloud Platform) account in which you want to

build your Dialogflow Virtual Agent. That will create a Studio Flow integrated with the

Dialogflow Virtual Agent

● If that does not work, or if you need to edit the Studio Flow connecting to the Dialogflow

Virtual Agent later, you can use the Explore Products option in the left pane, navigate to

Studio > Flows to edit the flow.

Figure 10 Twilio Studio IVR Flow

https://www.twilio.com/docs/voice/virtual-agent/dialogflow-cx-onboarding

22

● Twilio call flow designed for Cisco UCCE is shown below

Figure 11 Twilio IVR Studio Flow – Template

General Overview of Twilio Studio Flow for UCCE Front-ending.

As is shown in Figure 11, the six major steps for the call are as follows:

1. The call comes into a specified PSTN number associated with a specific Twilio account,

<Trigger>ing there the execution of a Twilio Studio Flow, as configured,

2. whereupon some initial input is collected (Language, and callers initial intent) via a

<Gather> (a logical flow chart box, or “widget”, in that Studio flow),

3. and then, based on spoken input gathered thereby, the call is directed (via <Split> Studio

widget) to…

4. a Dialogflow Virtual Agent (via <Connect_to_VirtualAgent> Studio widget),

5. and when (as an exit state/condition detected) Escalation to a Live Agent is called for in the

Dialogflow bot, a <Function_add_sync_virtual_agent> widget is triggered to pass along

preserved call context,

6. as the <Connect_call_to> widget is used to deliver the call ultimately to UCCE for routing to

an agent/skill group.

Other <Play>/<Say> widgets and <Split> key press widgets are used for trouble shooting and error

messaging in the flow.

23

Detailed view of Twilio Studio flow for UCCE Integration

Widget: Trigger

● Studio Flows can be triggered by an Incoming Message, Incoming Call, or REST API request.

Attach Widgets to the trigger events that the Flow should respond to.

Figure 12 Twilio IVR Studio Flow – Trigger

Widget: set_lang_eng

• Using this widget the language is set to English

Figure 13 Twilio IVR Studio Flow – set_lang_eng

24

Widget: gather_input

• This widget gather_input with initial prompt

Figure 14 Twilio IVR Studio Flow gather_input

25

• This widget gather’s Advanced speech recognition settings

Figure 15 Twilio IVR Studio Flow gather_input continuation

26

• This widget is used to gather_input’s transition to next widget, upon detected speech

Figure 16 Twilio IVR Studio Flow gather_input continuation

27

Widget: split_speech

• This widget is configured to route any speech containing “Pizza” to the Pizza Ordering

Virtual Agent Bot

Figure 17 Twilio IVR Studio Flow – Split_Speech

28

Widget: Connect_to_VirtualAgent

Figure 18 Twilio IVR Studio Flow – Connect_to_VirtualAgent

The Connect_to_Virtual Agent Widget is the widget put in place by the following Twilio and Google’s

One-Click Connector for Dialogflow and Twilio, as described in the Dialogflow Onboarding Guide

(https://www.twilio.com/docs/voice/virtual-agent/dialogflow-cx-onboarding). Parameters

and Bot configurations can be programmatically passed into to the Dialogflow bot via those entries

here in this widget, as a way to pass in Unified Profile or other data input by the call in the <Gather>

from Twilio/Studio, to the Google Dialogflow bot. Status callback webhooks can be sent to a

customer’s app, if that app needs to be aware of conversational turn-by-turn (intent-by-intent)

https://www.twilio.com/docs/voice/virtual-agent/dialogflow-cx-onboarding
https://www.twilio.com/docs/voice/virtual-agent/dialogflow-cx-onboarding

29

progress of the caller through the bot. Otherwise, action callbacks (with last matched intent or

sentiment at last matched intent) can be returned when the caller exits the bot (change of state):

e.g. at Live Agent Handoff, Session Paused, Hung up, etc.

Figure 19 Twilio IVR Studio Flow – Connect_to_VirtualAgent continuation

The configured actions taken from the Dialogflow bot, depending upon which of 5 states the call

exits the Dialogflow bot in are shown in the figure above. For this blueprint we’ve used Live Agent

Handoff, but “paused” (the new Session Resumption feature of Dialogflow -

https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-

cx#pause-and-resume-a-conversation-session) could also be used (e.g. to resume a longer

form/collection, after a live agent interaction, or to go off an make a payment and then return to

the bot), or “Completed” to capture some input to the customers’ profile from the bot (interaction).

In this case, Live Agent Handoff then triggers a “function_add_sycn_virtual_agent” widget step.

Dialogflow CX Virtual Agent Configuration

Though much richer step-by-step directions for setting up Dialogflow and Twilio/Dialogflow

integration are available at Google and here in the Twilio One-Click Integration Dialogflow On-

boarding Guide (https://www.twilio.com/docs/voice/virtual-agent/dialogflow-cx-onboarding), the

following summarizes the logical steps taken at the Dialogflow bot side, once that is set up and

the call is passed to Dialogflow bot:

https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-cx#pause-and-resume-a-conversation-session
https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-cx#pause-and-resume-a-conversation-session
https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-cx#pause-and-resume-a-conversation-session
https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-cx#pause-and-resume-a-conversation-session
https://www.twilio.com/docs/voice/virtual-agent/dialogflow-cx-onboarding

30

Figure 20 Basic Dialogflow Bot Setup

In Dialogflow CX a Start Page with Welcome Intent (first message /prompt played the caller if the

caller says anything upon connection to the bot) is the logical starting point of the flow, followed

by a series of detected “Intents” matched by the Dialogflow bot based on what the caller says to

the bot (e.g. That they want to “Order a Pizza” or that they want to know the “Store Hours” or the

“Specials”)

Figure 21 Dialogflow Bot setup continuation

When an intent is detected (spoken phrase matches an input/configured training phrase) a

Fulfillment then describes the action taken (and text spoken to the caller as that action is taken –

in this case forwarding the call to an Agent if, say, one of the specials are not available)

31

Figure 22 Dialogflow Bot setup continuation

 When a call exits the bot – i.e. is forwarded by the bot to a human agent / Live Agent Escalation

end state – (in this case due toppings unavailability), information about the caller’s interaction with

the bot is passed as a (red) set of parameters from the Google Dialogflow bot, back to the Twilio

Platform (and from there in succeeding steps shown below, via Functions and Sync, to other

downstream components that needs this Call Context information, like Cisco UCCE, and the Cisco

Finesse Agent App / screen pop), so that the human agent getting handed the call can know the

callers intent and what they said to the bot – and what triggered the escalation (“anchovies not

available”)... all without the caller having to repeat this information to the Agent.

32

Widget: function_add_sync

Figure 23 Twilio IVR Studio Flow – function_add_sync_virtual_agent

The function_add_sync widget takes the returned data from the Dialogflow CX Virtual agent (pizza

toppings, quantity, etc.) and some of the original Twilio Studio data (caller language and phone

number) and sets these variables in a Twilio Sync map via a custom Twilio Function.

33

Figure 24 Twilio IVR Studio Flow – function_add_sync Continuation

The function_add_sync widget passes parameters from the call into Twilio Sync. The virtual agent

connector will return the parameters set in the live agent handoff example,

{{flow.add_ons.VirtualAgentData.VirtualAgentProviderData.AgentHandoffParameters.escalationR

eason}} the Twilio Studio flow simply sets them via a function (using sync).

The original call sid is the key for the data in the sync map.

For more information on setting up the Function itself, see Section 5.1.6 below on setup of Twilio

Functions.

Parameters that can be sent (via action callbacks for the other transition states besides Live Agent

Handoff, as shown here) also include Last Matched Intent and Sentiment on Last Matched Intent,

as well as many others. More info about these attributes passed and this newest feature of Twilio’s

programmatic integration with Dialogflow can be found here in the updated Twilio Virtual Agent

documentation.

https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-cx#action
https://www.twilio.com/docs/voice/twiml/connect/virtualagent/virtualagent-dialogflow-cx#action

34

Widget: connect_call_to_sales

• In this widget the call is routed to Cisco UCCE for a live agent interaction.

Figure 25 Twilio IVR Studio Flow – function_add_sync Continuation

35

If the call is not routed to UCCE, an error message is played as per configured in the wizard

“say_play_1” as shown below.

Widget: say_play_1

Figure 26 Twilio IVR Studio Flow – say_play_1

36

Widget: split_key_press

Figure 27 Twilio IVR Studio Flow – split_key_press

If the Caller provides DTMF 1 to continue to the UCCE flow, control will go to split_key_press nodes.

(deployed here for flow validation and troubleshooting), i.e. to bypass Dialogflow for

troubleshooting/development purposes.

37

5.1.5 Phone Numbers

● Navigate to Phone Numbers > Manage > Active numbers

● Under Configure,

o Configure with: Webhook, TwiMLBin, Function, Studio Flow, Proxy Service

o A call comes in: Studio Flow

o Flow: CiscoUCCEStudioFlow (an IVR flow created in the Section 5.1.4)

o Primary handler fails: Webhook

o HTTP: HTTP POST

Figure 28 Phone Numbers

● Save configuration

5.1.6 Functions

● Navigate to Explore Products > Functions and Assets > Services

● Click Create Service

Figure 29 Functions – Create function

● Service Name: cx-data-exchange

● Click Create your function

● Functions: Type the function name e.g., read_sync

● Click Add+ to create more functions say, write_sync

38

Figure 30 Create function continuation

● read_sync function is made as Public.

● Javascript for the read_sync function is shown in the right pane below

Figure 31 Functions – read_sync

● Click Add+ to create a function write_sync

● The URL for write sync function is https://cx-data-exchange-7367.twil.io/write_sync

● write_sync function is made Protected

● This function is used in the “function_add_sync” node of Twilio Studio IVR Flow

Figure 32 Functions – write_sync

https://cx-data-exchange-7367.twil.io/write_sync

39

The full text of the functions that are write_sync (private) and read_sync (public) is as follows:

write_sync:

exports.handler = async function(context, event, callback) {

 const client = context.getTwilioClient();

 await client.sync.v1.services(context.SYNC_SERVICE)

 .syncMaps(context.SYNC_MAP)

 .syncMapItems

 .create({key: event.callSid, itemTtl: 3600, data: {

 callTo: event.callTo,

 callFrom: event.callFrom,

 language: event.language,

 escalationReason: event.escalationReason,

 quantity: event.quantity,

 size: event.size,

 toppings: event.toppings

 }})

 .then(sync_map_item => {

 console.log(sync_map_item.key)

 return callback(null, sync_map_item.key);

 })

 .catch(error => {

 console.log(error);

 return callback(error, null);

-and-

read_sync:

exports.handler = async function(context, event, callback) {

 const client = context.getTwilioClient();

 await client.sync.v1.services(context.SYNC_SERVICE)

 .syncMaps(context.SYNC_MAP)

 .syncMapItems(event.callSid)

 .fetch()

 .then(sync_map_item => {

 console.log(sync_map_item.key + ": "+ sync_map_item.data);

 return callback(null, sync_map_item.data);

 })

 .catch(error => {

 console.log(error);

 return callback(error, null);

 });

};

● Then, navigate to Settings & More > Environment Variables

● Add the Key for SYNC SERVICE and SYNC MAP

40

Figure 33 Functions – Environment Variables

41

Navigate to Settings & More > Dependencies

● Node Version: Node.js v18

● Below are the Modules and the corresponding Versions which are added as

dependencies

Figure 34 Functions – Dependencies

Figure 35 Functions – Dependencies continuation

● Click Deploy All to validate and deploy the code

42

5.1.7 Services

● Under Explore Products, navigate to Sync > Services

● Click Create new Sync Service

● Sync Service named CiscoCallContext is shown below

● Click Save

Figure 36 Sync Service

Figure 37 Sync Service Continuation

● Navigate to CiscoCallContext > Maps

● Click Create new Sync Map

Figure 38 Create Sync Maps

43

● Sync Map named CiscoCallContext is shown below

● KEY value i.e., Twilio callSid and the Map Item Data are added to the database as shown

below

Figure 39 Sync Maps

44

5.2 Cisco UBE Configuration

Cisco Unified Border Element (CUBE) which is the Ingress gateway for UCCE environment includes

the following configurations to route the incoming Twilio call to CVP.

5.2.1 Login to CUBE

Login to CUBE using Telnet or SSH. Use the IP address, username and password for the login.

5.2.2 Network Interface

Configure the network interface of the CUBE, one interface for LAN and one for WAN side. LAN

side is configured towards CVP and WAN side towards Twilio.

interface GigabitEthernet0/0/0

 description Interface facing UCCE

 ip address 10.64.xx.xx 255.255.0.0

 negotiation auto

interface GigabitEthernet0/0/2

 description For Twilio

 ip address 192.65.xx.xx 255.255.255.128

 negotiation auto

5.2.3 Global CUBE Settings

Set the global configuration for CUBE as shown below:

voice service voip

 ip address trusted list

 ipv4 54.172.60.0 255.255.254.0

 address-hiding

 mode border-element

 allow-connections sip to sip

 trace

 sip

 session refresh

 asserted-id pai

45

5.2.4 Codecs

Configure the required codec profiles as shown below:

voice class codec 1

 codec preference 1 g711ulaw

 codec preference 2 g711alaw

voice class codec 2

 codec preference 1 g711ulaw

5.2.5 Voice Class Configurations

Voice class configurations for DPG (Dial Plan Group) and Tenant which is required by the Dial-

Peers for call routing are configured here.

Voice Class DPG towards CVP

voice class dpg 500

 description Twilio to CVP

 dial-peer 3010 preference 1

Voice Class Tenant towards CVP

voice class tenant 100

 sip-server ipv4:172.16.XX.XX

 options-ping 60

 session transport tcp

 bind control source-interface GigabitEthernet0/0/0

 bind media source-interface GigabitEthernet0/0/0

Voice Class Tenant towards Twilio

voice class tenant 500

 registrar dns:XXXXXXXXdemo.sip.us1.twilio.com expires 600

 credentials username +17864XXXXXX password 6 AGXXXiLRIPEP\\XXXX realm sip.twilio.com

 authentication username +17864XXXXXX password 6

USXNV\OVZdRAD_OJKiMia]XXXXXXXXXXXX realm sip.twilio.com

 sip-server dns:XXXXXXXdemo.sip.us1.twilio.com

 options-ping 60

 session transport udp

 bind control source-interface GigabitEthernet0/0/2

 bind media source-interface GigabitEthernet0/0/2

46

Voice Class SIP OPTIONS

voice class sip-options-keepalive 900

 description For Ping

 transport udp

5.2.6 Dial Peers

Inbound and Outbound dial-peers are required in CUBE for the call routing between Twilio and

CVP.

Inbound Dial-Peer for Twilio

dial-peer voice 1010 voip

 description *** Inbound Call from Twilio to CUBE-WAN ***

 session protocol sipv2

 destination dpg 500

 incoming called-number +17864XXXXXXX

 voice-class codec 1

 voice-class sip tenant 500

 dtmf-relay rtp-nte

 no vad

Outbound Dial-Peer for Twilio

dial-peer voice 2011 voip

 description *** Outbound Call from CUBE-WAN to Twilio****

 destination-pattern BAD.BAD

 session protocol sipv2

 session target sip-server

 voice-class codec 1

 voice-class sip tenant 500

 voice-class sip options-keepalive profile 900

 dtmf-relay rtp-nte

 no vad

Outbound Dial-Peer for CVP

dial-peer voice 3010 voip

 description ***Outbound to CVP from CUBE LAN for Twilio***

 translation-profile outgoing ucce23

 destination-pattern BAD.BAD

 session protocol sipv2

 session target sip-server

 voice-class codec 2

47

 voice-class sip tenant 100

 dtmf-relay rtp-nte

 no vad

5.2.7 Voice Translation Rules

A voice translation rule is used to convert the incoming called number to UCCE configured Dialed

Number which is required for the call routing.

Voice Translation Profile

voice translation-profile ucce23

 translate called 113

Voice Translation Rule

voice translation-rule 113

 rule 5 /^\+1786420XXXX/ /8500/

5.2.8 IP Route

Add the required IP route for Twilio network as shown below:

ip route 54.172.60.0 255.255.255.0 192.65.XX.XX

5.2.9 Check Trunk Status

cube7ucce#show sip-ua register status

Tenant: 500

--------------------- Registrar-Index 1 ---------------------

Line peer expires(sec) reg survival

P-Asocial-U RI

================================ ========= ====

+1786420XXXX -1 460 yes normal

48

5.2.10 Cisco UBE Running Configuration

cube7ucce#sh running-config br

Building configuration...

Current configuration : 24214 bytes

!

version 17.12

service config

service timestamps debug datetime msec

service timestamps log datetime msec

service call-home

platform qfp utilization monitor load 80

platform punt-keepalive disable-kernel-core

!

hostname cube7ucce

!

boot-start-marker

boot system flash:isr4300-universalk9.17.12.04a.SPA.bin

boot-end-marker

!

vrf definition Mgmt-intf

 !

 address-family ipv4

 exit-address-family

 !

 address-family ipv6

 exit-address-family

!

logging buffered 147483647

aaa new-model

!

vtp version 1

!

multilink bundle-name authenticated

!

password encryption aes

!

!

voice service voip

 ip address trusted list

 ipv4 54.172.60.0 255.255.254.0

address-hiding

 mode border-element

 allow-connections sip to sip

 fax protocol pass-through g711ulaw

 trace

 sip

 session refresh

49

 asserted-id pai

!

voice class codec 1

 codec preference 1 g711ulaw

 codec preference 2 g711alaw

!

voice class codec 2

 codec preference 1 g711ulaw

!

voice class dpg 500

 description Twilio to CVP

 dial-peer 3010 preference 1

!

voice class sip-options-keepalive 900

 description For Ping

 transport udp

!

voice class tenant 100

 sip-server ipv4:172.16.XX.XX

 options-ping 60

 session transport tcp

 bind control source-interface GigabitEthernet0/0/0

 bind media source-interface GigabitEthernet0/0/0

!

voice class tenant 500

 registrar dns:XXXXXXXXdemo.sip.us1.twilio.com expires 600

 credentials username +17864XXXXXX password 6 AGXXXiLRIPEP\\XXXX realm sip.twilio.com

 authentication username +17864XXXXXX password 6

USXNV\OVZdRAD_OJKiMia]XXXXXXXXXXXX realm sip.twilio.com

 sip-server dns:XXXXXXXdemo.sip.us1.twilio.com

 options-ping 60

 session transport udp

 bind control source-interface GigabitEthernet0/0/2

 bind media source-interface GigabitEthernet0/0/2

!

voice translation-rule 113

 rule 5 /^\+17864203XXX/ /8500/

!

voice translation-profile ucce23

 translate called 113

!

diagnostic bootup level minimal

!

no license feature hseck9

license udi pid ISR4331/K9 sn XXXXXXXXXXXXXX

license boot level appxk9

license boot level uck9

license boot level securityk9

memory free low-watermark processor 368651

50

!

spanning-tree extend system-id

!

redundancy

 mode none

!

interface GigabitEthernet0/0/0

 description CUBE 7 Interface facing UCCE

 ip address 10.64.XX.XX 255.255.0.0

 negotiation auto

!

interface GigabitEthernet0/0/2

 description CUBE 7 Public

 ip address 192.65.XX.XX 255.255.255.XX

 negotiation auto

!

negotiation auto

!

interface Service-Engine0/2/0

!

interface Service-Engine0/4/0

!

interface GigabitEthernet0

 vrf forwarding Mgmt-intf

 no ip address

 negotiation auto

!

ip forward-protocol nd

ip http server

ip http authentication local

ip http secure-server

ip http client source-interface GigabitEthernet0/0/0

!

ip rtcp report interval 2000

ip route 0.0.0.0 0.0.0.0 10.64.1.1

ip route 54.172.60.0 255.255.255.0 192.65.XX.XX

ip route 172.16.0.0 255.255.0.0 10.64.XX.XX

ip ssh bulk-mode 131072

!

control-plane

!

voice-port 0/2/0

!

voice-port 0/2/1

!

dial-peer voice 1010 voip

 description *** Inbound Call from Twilio to CUBE-WAN ***

 session protocol sipv2

 destination dpg 500

51

 incoming called-number +1786420XXXX

 voice-class codec 1

 voice-class sip tenant 500

 dtmf-relay rtp-nte

 no vad

!

dial-peer voice 2011 voip

 description *** Outbound Call from CUBE-WAN to Twilio****

 destination-pattern BAD.BAD

 session protocol sipv2

 session target sip-server

 voice-class codec 1

 voice-class sip tenant 500

 voice-class sip options-keepalive profile 900

 dtmf-relay rtp-nte

 no vad

!

dial-peer voice 3010 voip

 description ***Outbound to CVP from CUBE LAN for Twilio***

 translation-profile outgoing ucce23

 destination-pattern BAD.BAD

 session protocol sipv2

 session target sip-server

 session transport tcp

 voice-class codec 2

 voice-class sip tenant 100

dtmf-relay rtp-nte

 no vad

!

line con 0

 exec-timeout 5 0

 password 6 XXXXXXX

 logging synchronous

 stopbits 1

line aux 0

line vty 0 4

 exec-timeout 15 0

 password 6 XXXXXXX

 logging synchronous

transport input telnet

line vty 5 14

 transport input ssh

!

 active

 destination transport-method http

!

end

52

5.3 CVP Configuration

This section provides the configuration required in CVP to pass the SIP Header “x-ciscodata” sent

from Twilio to Cisco UCCE environment. Prior to this, CVP should have the basic configurations

required for the integration and call routing with the other components of UCCE.

5.3.1 Configure SIP Header Passing in CVP

● Login to CVP OAMP Server

● Login to Cisco Unified Customer Voice Portal by providing the Username and Password

Figure 40 CVP OAMP login

● Navigate to Device management > Unified CVP Call Server

Figure 41 CVP Call Server

● Select and open the CVP call server from the list

Figure 42 Open CVP Call Server

53

● Choose SIP settings and open Advanced Configuration

Figure 43 CVP SIP Configuration

● In Advanced Configuration move down to SIP Header Passing (to ICM) section.

● Add the header name “x-ciscodata” which is sent by Twilio for passing the Call ID.

● Provide the Header Name and Click Add

Figure 44 Adding SIP Header in CVP

Figure 45 Added SIP Header in CVP

● After adding the SIP Header, Save and Deploy the configuration.

Figure 46 Save and Deploy

54

● Navigate to System > Control Center

● Check the service status of CVP Call Server. It should be Up

Figure 47 Check CVP Call Server Status

55

5.4 Cisco ICM Configuration

This section provides the ICM Script configuration based on which the Inbound call is routed to

the available Skill Group Agent.

5.4.1 ICM Script Configuration

● Login to Cisco ICM Server

● Open Cisco Unified CCE Tools and navigate to Administration tools and open Script

Editor

● A basic Inbound call flow is created in ICM, which prompts the caller to enter a selection

for a skill group of their choice.

Figure 48 ICM Script (Script name: cvp_dtmf_Twilio)

56

● In the flow configuration, a peripheral variable is configured to get the Twilio Call ID send

in the SIP Header (x-ciscodata) of the call Invite using the value

“substr(Call.SIPHeader,13,(len(Call.SIPHeader)))”

Figure 49 ICM Script – Peripheral Variable

5.4.2 Dialed Number and Call Type

● Open Cisco Unified CCE Tools in ICM Server and navigate to Administration tools and

open Configuration Manager

● Expand Tools > List Tools > and select Call Type List

Figure 50 ICM Configuration Manager

57

● Click Retrieve. CVP2_CT is used for this configuration.

Figure 51 ICM Call Type

● In Configuration Manager, Expand Tools > List Tools > and select Dialed Number / Script

Selector List

Figure 52 ICM Dialed Number / Script Editor

58

● Click Retrieve. Dialed Number 8500 is used for this configuration

Figure 53 ICM Dialed Number / Script Editor Continuation

● Map the Dialed Number with Call Type

Figure 54 ICM Dialed Number / Script Editor Continuation

59

5.4.3 Mapping the ICM Script to Dialed Number

The Dialed Number configured in ICM is invoked based on the new call request from CVP. The new

script designed needs to be mapped with the required Dialed Number.

● Open Cisco Unified CCE Tools and navigate to Administration tools and open Script

Editor

● Navigate to Script > Call_Type Manager

Figure 55 ICM Script mapping with Dialed Number

● In the Call Type Manager window, select the Call Directory and choose the required

Dialed Number. In this configuration it is CVP_RC.8500

Figure 56 ICM Script mapping with Dialed Number Continuation

60

● Select Modify and set the Call Type for this Dialed Number. In this configuration it is

CVP2_CT.

Figure 57 ICM Script mapping with Dialed Number Continuation

● In the Call Type Manager window, select Schedules and choose the Call Type. Click

Modify to choose the required Call Script. Here cvp_dtmf_Twilio named script is used. Click

Apply and OK to save the configuration.

Figure 58 ICM Script mapping with Dialed Number Continuation

61

Figure 59 ICM Script mapping with Dialed Number Continuation

62

5.5 Cisco UCM Device Configuration

Configuration of UCCE Agent Phone is covered in this section. A Cisco desk phone is configured in

the UCCE CUCM and is enabled as the associated device for the Finesse Agent.

5.5.1 Configure Agent Phone in CUCM

● Login to CUCM using the administrator credentials to add the phone device.

Figure 60 CUCM Login

● Navigate to Device > Phone

● Select Add New to add a new Phone to CUCM by providing the Phone Type. In this

configuration it is Cisco 7841

Figure 61 Adding Phone

● Provide the MAC address and complete the Device Information with Device pool, Phone

Button template and Softkey Template

● Also provide the details for Media Resource Group list and User Hold and Network Hold

MOH audio source

Figure 62 Adding Phone Continuation

63

● Under Protocol Specific Information select the Device Security Profile with Standard SIP

Non-Secure profile of the phone model. Also select a SIP Profile.

● Keep other configurations in this page default and save the configuration.

Figure 63 Adding Phone Continuation

● Add a new Line for this Phone by choosing Add a new DN from the left pane

● Provide a Directory Number and Keep the other configurations default.

● Save and Apply Config.

Figure 64 Adding Directory Number

5.5.2 Add Phone to UCCE Application User

● Navigate to User Management > Application User

● Select the Application User which is related to the UCCE configuration. (UCCE CUCMs will

have this Application user created as a part of setup configuration)

● Add the new Phone device to Controlled Devices list using the Device Association.

● Save the configuration.

64

Figure 65 Adding Phone to UCCE Application User

5.5.3 Add Phone to End User

● Navigate to User Management > End User

● Add a new End User for the Agent Phone

Figure 66 Adding End User

● Add the new Phone device to the End Users Controlled Devices list using Device

Association

Figure 67 Adding Phone to End User

65

● Add the required permissions for the End User and Save the configuration.

Figure 68 Adding permissions to End User

● Navigate to the newly added Phone Device and set the Owner configuration to the End

User created.

Figure 69 Mapping the End User to the Phone Device

66

5.6 Cisco Finesse Configuration

Cisco Finesse is configured to have a Screen Pop in the Finesse web client to display the Twilio call

context details to the Agent while answering the calls. Screen pop sample gadget for Finesse is

used for this configuration.

5.6.1 Setup Finesse Screen Pop Gadget Files

● Download the Screen pop sample gadget for Finesse from Cisco DevNet.

(https://developer.cisco.com/docs/finesse/sample-gadgets/#sample-gadgets)

● The downloaded zip file has a folder named “ScreenPop” which contains the required

CSS Source File, JSFile and HTML Document

Figure 70 Sample Gadget Files

● Modify the ScreenPop.js file to add the API Get request URL provided by Twilio for

retrieving the Call Context details. The URL used here is "https://cx-data-exchange-

7367.twil.io/read_sync?callSid=' + callvars["callVariable1"] + '"

Figure 71 Add API URL in ScreenPop.js file

● Save ScreenPop.js file

https://developer.cisco.com/docs/finesse/sample-gadgets/#sample-gadgets

67

● Edit the ScreenPop HTML file to add a Title for the new Screen

Figure 72 Adding Title in HTML file

● Files are ready to upload into the Finesse Server.

5.6.2 Upload Gadget Files to Finesse Server

Finesse allows to upload gadgets and is done via a specific user called “3rdpartygadget”. This

account only has permission to /files directory and any directories created under it.

● Login to Finesse Server CLI with Username and Password

● Reset the password for 3rdpartygadget using the command “utils

rest_3rdpartygadget_password”

Figure 73 Password Rest for 3rdpartygadget user

● Use an SFTP application to connect to the Finesse Server. Here WinSCP is used.

● Connect to the Finesse Server using 3rdpartygadget as the Username and the password

that is set in the previous step.

s

Figure 74 Connect to Finesse Server

68

● After connecting to Finesse Server, navigate to folder “files”

● Copy the CSS Source File, JSFile and HTML Document which is configured in section 5.6.1

Figure 75 Copying Gadget files to Finesse Server

● All the required files for the ScreenPop gadget are loaded into Finesse Server.

69

5.6.3 Configure Finesse Desktop Layout

The Finesse Desktop Layout needs to be modified with the new gadget for Screen Pop.

● Login to Finesse Administrator with Username and Password

Figure 76 Login to Finesse Administrator

● Navigate to Desktop Layout and click Expand All

Figure 77 Finesse Desktop

● Locate the Tab for Home page and add the gadget configuration for Screen Pop using

below configuration. The ScreenPop.xml file is accessed from the Finesse Server location

which is added in section 5.6.2

70

● Save the Desktop Layout

<gadgets>

 <gadget>/3rdpartygadget/files/ScreenPop.xml</gadget>

</gadgets>

Figure 78 Adding Screen Pop Gadget to Finesse Desktop

● Navigate to Team Resources in Finesse Administration

● Select Default from the List

● Check the Override the System Default for Desktop Layout Configuration

● Save the configuration.

Figure 79 Override System Default

● Login to Finesse CLI and restart Cisco Finesse Tomcat Service and Cisco Tomcat Service

using below comments:

⮚ utils service restart Cisco Finesse Tomcat

⮚ utils service restart Cisco Tomcat

71

● Login to Finesse Agent. The new Screen Pop gadget will be available in the Home page as

shown below:

Figure 80 ScreenPop Gadget in Finesse Agent

5.7 Twilio Call Context in Cisco Finesse Agent

The call context captured in Twilio Studio Flow is sent as a response to Finesse Agent’s API query

and is displayed in the Finesse Agent’s Screen Pop section.

5.7.1 Twilio Call Context

Figure 81 ScreenPop Gadget with Twilio Call Context

Figure 82 Twilio Call Summary

5.7.2 Call Scenario Tested

● PSTN user calls Twilio–owned number and gets an initial IVR, followed by interaction with

a Dialogflow Virtual Agent.

● PSTN user says “Agent” option to reach Cisco UCCE

● Call is connected with UCCE and gets a welcome message

● UCCE provides a selection for required Skill Group

● Based on the selection, call is routed to the available Agent

● Agent answers the call and can view the Twilio Call Context in the Finesse Agent as a

ScreenPop

72

6 Glossary

ACD Automatic Call Distribution

API Application Program Interface

CCE Contact Center Enterprise

CTI Computer Telephony Integration

CUBE Cisco Unified Border Element

CUCM Cisco Unified Communications Manager

CVP Customer Voice Portal

DC Domain Controller

DNS Domain Name System

HTML Hyper Text Markup Language

ICM Intelligent Contact Management

IVR Interactive voice Response

LAN Local Area Network

OAMP Operations Console

PG Peripheral Gateway

PSTN Public Switched Telephone Network

SFTP Secure File Transfer Protocol

SIP Session Initiation Protocol

SSH Secure Socket Shell

UCCE Unified Contact Center Enterprise

VRU Voice Response Unit

VVB Virtualized Voice Browser

WAN Wide Area Network

--- End of Document ---

